Decision Tree 매개변수 튜닝 참고글 : [데이터 분석] Decision Tree(의사결정 나무) 알고리즘 [R 분석] Decision Tree(의사결정 나무) 알고리즘 - rpart # 1. train data set과 test data set 분리 원본 데이터가 각 class별로 균등하지 않는 경우는 sampling 한 데이터도 균등하지 않기 때문에 균등하게 맞춰주는 것이 좋습니다.=> upsampling, downsampling을 통해 각 class별 데이터를 균등하게 만들어 놓고, train set과 test set으로 분리 필요 > sn train test library(party)> ctree_m ctree_m # 모델 확인 Conditional inference tree with 4..
조건부 추론 나무 조건부 추론 나무란 의사결정 나무(Decision Tree) + 통계적 유의성 확인(변수의 유의성) 가능한 수치를 제공해주는 Tree 입니다. Decision Tree(의사결정 나무) 알고리즘이란?(이동) 의사결정 나무 알고리즘에서 발생하는 두 가지 단점을 극복한 건강한(?) 나무입니다. - 통계적 유의성에 대한 판단 없이 노드를 분할하면서 생기는 과적합 문제 극복 - 다양한 값으로 분할 가능한 변수가 다른 변수에 비해 선호되는 문제 조건부 추론 나무를 통해, 통계적으로 컬럼별 중요도를 파악하고, 중요도가 큰 변수를 트리의 상위에 배치하여 인과관계를 조금 더 정확하게 판별할 수 있습니다. 1. 조건부 추론 나무 생성 및 시각화 ### 1. data sampling : train data..