Multi-index & Multi-column #. 생성 - 인덱스의 개수, 상위 level & 하위 level의 개수가 일치해야 함 - 생성할 일은 많지 않음 :( 1. Series s1 = Series([1,2,3,4,5,6], index=[['a','a','b','b','c','c'], [1,2,1,2,1,2]]) s1a 1 1 2 2 b 1 3 2 4 c 1 5 2 6 dtype: int64 2. DataFrame 생성 후 설정 df1 = DataFrame({'value':[1,2,3,4,5,6], 'ind1':['a','a','b','b','c','c'], 'ind2':[1,2,1,2,1,2]}) df1 = df1.set_index(['ind1','ind2']) # 리스트 형식으로 인덱스에 동..
참고글 : [Python] Pandas - DataFrame Series - 1차원 배열 구조(벡터) - 단 하나의 데이터 타입 허용 - 데이터 프레임을 구성하는 하나의 특정 row나 column으로 설명 가능 - DataFrame의 기본 (Series가 모여 DataFrame이 만들어짐) # Pandas 적용 import pandas as pd from pandas import Series, DataFrame # 함수를 이름 그대로 사용 # 생성 s1 = Series([1,2,3,4])s10 1 # 행 번호를 갖는 형태로 저장 (0부터 시작)1 22 33 4dtype: int64 # Index row(Key) 설정1. Series 생성 시 row index 이름(Key) 선언s1= Series([1,2..