참고글[Python] Pandas - Series [Python] Pandas - DataFrame[Python] DataFrame 그룹 함수 적용(map,apply,applymap) # 행/열 전치 (T 메서드)fruits.T 0 1 2 3nameapplemango bananacherryprice2000 150 500 400qty 5 4 10 NaN # 연산 (add, sub, div, mul 메서드)# NA 처리 가능한 연산 메서드 df1 = DataFrame({'a':[1,2,3], 'b':[10,NA,20]})a b0 1 10.01 2 NaN2 3 20.0 df2 = DataFrame({'b':[1,2,3], 'c':[10,NA,20]}, index = [0,1,3])b c0 1 10.01 2 N..
수학, 통계 메서드 Numpy의 수학, 통계 메서드는 모두 axis(축) 지정이 가능합니다. # .sum : 합np.sum?np.sum( ['a', 'axis=None', 'dtype=None', 'out=None', 'keepdims=', 'initial='],) # axis = 축 지정, dtype = 데이터 타입, keepdims = 차원 유지 여부arr = np.arange(10).reshape(2,5)array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])arr.sum()45 # 모든 원소의 합arr3.sum(axis=0) array([ 5, 7, 9, 11, 13]) # 서로 다른 행별(세로) 합arr.sum(axis=1, keepdims = True)array([[10], ..
참고글 :[Statistics] 중심극한정리(표본과 모집단)[Statistics] 표본 정규 분포 모집단 : 통계적인 관찰의 대상이 되는 집단 전체 (출처 : 두산백과)모수 : 모집단의 특성을 나타내는 정보 - 모평균(μ:mu): 모집단의 평균 - 모분산(σ2) : 모집단의 분산 - 모표준편차(σ:sigma): 모집단의 표준편차 = s x √n (n=sample size) 표본 : 모집단에서 선택된 모집단 구성단위의 일부 (출처 : 두산백과) - 모집단 전체를 모두 조사할 수 없으므로, 모집단으로부터 random sampling 된 하위 집단통계량 : 표본의 특성통계치 : 통계량에 표본으로부터 관찰된 정보를 대입하여 구한 실측값 - 표본평균(X-bar) : 표본의 평균 - 표본분산(s2) : 표본의 분산..