#. 문제 https://swexpertacademy.com/main/code/problem/problemDetail.do?contestProbId=AV15FZuqAL4CFAYD&categoryId=AV15FZuqAL4CFAYD&categoryType=CODE* 이 문제의 저작권은 SW Expert Academy에 있습니다. [입력] 가장 첫줄은 전체 테스트 케이스의 수이다. 각 테스트 케이스의 첫 줄에 두 자연수가 주어지는데 각각 배열의 세로 크기 N, 배열의 가로크기 M이다 (1≤N
K-NN 알고리즘 적용 및 매개변수 튜닝 참고글 : KNN 알고리즘(이동) K-NN(K-Nearest Neighbors) 알고리즘은 새로운 관측치와 기존 데이터와의 거리 연산를 통한 분류가 목적이므로 train data / test data가 동시에 들어가는게 특징입니다. 또한, 알고리즘 자체에 predict() 기능을 보유하고 있어서 예측 및 평가에 predict 함수를 사용하지 않아도 자체적으로 수행해줍니다. install.packages("class")library(class)knn(train, # 모델 평가용 데이터 중 예측 변수 test, # 예측용 데이터 (예측을 훈련과 동시에 가능) cl, # 분류(class) 변수 k=n, # k 설정 (근접한 k개의 데이터까지 확인) prob=TRUE) ..
Decision Tree in R (분류분석) Decision Tree(의사결정 나무) 알고리즘이란?(이동)지도학습을 위한 데이터 샘플링(이동)조건부 추론 나무 알고리즘(이동) > install.packages('rpart') > library(rpart) # Decision Tree 분석 및 시각화를 위한 패키지 ### 1. data sampling : train data set, test data set 분리> library(doBy) > train f1 rn test m m # 각 컬럼마다의 불순도 연산이 수행되므로 데이터가 커질수록 시간이 길어질 수 있음 n= 110 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 110 ..
Decision Tree 알고리즘 참고글 : [R] Decision Tree(의사결정 나무) 알고리즘 - rpart [R 분석] Decision Tree 매개변수 튜닝 1. Decision Tree (출처 : 위키백과) Decision tree(의사결정나무)는 분류 모델 중 tree기반 모델의 기본이 되는 모델입니다. - 모델 학습 시 각 설명변수마다 feature importance(중요도)를 계산 => 불순도 측정 => 단순한 트리를 생성하기 위해 불순도가 가장 낮은(feature importance가 가장 높은) 설명변수를 상위 노드에 고정 (만약 비슷한 불순도를 갖는 설명변수가 있다면 더 많은 level(자식 노드)을 갖는 변수가 우선순위를 갖는 특징) -> Why? 자식 노드가 많을 수록 불순도..