본문 바로가기 메뉴 바로가기

Data Makes Our Future

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

Data Makes Our Future

검색하기 폼
  • 분류 전체보기 (740)
    • Data (18)
      • Statistics (10)
      • Analysis (8)
    • SQL (24)
      • Organize (3)
      • Install (2)
    • R (58)
      • Collection (4)
      • Process (33)
      • Analysis (11)
      • Visualize (4)
      • Install (3)
    • Python (56)
      • Collection (10)
      • Process (27)
      • Visualize (2)
      • Install (3)
    • Web (164)
      • API (16)
      • Spring (58)
      • JAVA (49)
      • Infra (11)
    • PS (366)
      • Algorithm (45)
      • Problem_Solving (311)
      • PS_Note (7)
    • Books (35)
    • ADsP (4)
    • eTc (15)
  • 방명록

처리 (1)
[Python 정리] 데이터 가공

#. 색인 (.np.ix_, .iloc, .loc) *# 슬라이스 색인 (얕은 복사, 원본 갱신) - 1차원 : ar[n:m] # n~m-1 - 2차원 : arr[:2] # 행 우선 (n~1행) arr[:2, 1:] # (n~1행, 1~m열) # 다차원 색인 - arr[[1,5,3], [2,6,4]] # point 색인 (1,2), (5,6), (3,4) - arr[[1,5,3], [:,[2,6,4]] # 1,5,3행의 2,6,4열 # np.ix_() 함수 색인 - arr[np.ix_([1,5,3], [2,6,4])] # 1,5,3행의 2,6,4열 (np.ix_ 함수 : 위치 값으로 전달) # iloc[] 정수 색인 - df.iloc[0,:] # 0번째 행 - df.iloc[:,0] # 0번째 열 - d..

Python 2019. 2. 20. 16:19
이전 1 다음
이전 다음
최근에 올라온 글
최근에 달린 댓글
링크
  • Gitbook
  • resume
Total
Today
Yesterday
TAG
  • c++
  • dp
  • DATA
  • 시뮬레이션
  • java
  • coding
  • 백준
  • BFS
  • R
  • PYTHON
  • C
  • BOJ
  • DFS
  • Algorithm
  • spring
more

Blog is powered by Tistory / Designed by Tistory

티스토리툴바