참고글[Python] Pandas - Series [Python] Pandas - DataFrame[Python] DataFrame 그룹 함수 적용(map,apply,applymap) # 행/열 전치 (T 메서드)fruits.T 0 1 2 3nameapplemango bananacherryprice2000 150 500 400qty 5 4 10 NaN # 연산 (add, sub, div, mul 메서드)# NA 처리 가능한 연산 메서드 df1 = DataFrame({'a':[1,2,3], 'b':[10,NA,20]})a b0 1 10.01 2 NaN2 3 20.0 df2 = DataFrame({'b':[1,2,3], 'c':[10,NA,20]}, index = [0,1,3])b c0 1 10.01 2 N..
참고글[Python] Pandas - DataFrame 관련 메서드[Python] DataFrame 그룹 함수 적용(map,apply,applymap)[Python] Pandas - Series [Python] profile 만들기 (import를 한 번에) DataFrame - Series의 집합 - 서로 다른 데이터 타입을 갖는 column - Data Frame의 Key : column / Series의 Key : row를 의미 # 생성%run profileimport pandas as pdfrom pandas import Series, DataFrame 1. 한 번에 생성fruits = DataFrame({'name':['apple','mango','banana','cherry'], 'price'..
데이터 가공을 위한 주요 함수 정리 #. 데이터 색인 1. 벡터 c(요소1, 요소2, ...) - 정수 색인 : vec[5] - 이름 색인 : vec['b'] - 벡터 색인 : vec[c(1,3,5)] - 슬라이스 색인 : vec[1:5] - 조건 색인 : vec[vec$'PAY'>500] 2. 리스트 list (key1 = value1, key2 = value2, .. ) - 정수(키) 색인 : list[[1]][1] - 이름 색인 : list$name[1] or list[['name']][1] 3. 행렬 matrix(1:20, nrow=4, byrow = F(세로 채우기), T(가로 채우기)) - 정수 색인 : m[2,3] # 2행,3열 - 이름 색인 : m[2,c('b','e')] - 벡터 색인 :..
rank : 벡터 값들의 순위 출력 rank(x, # 벡터 na.last = TRUE, # na는 마지막에 출력 ties.method = # 동률 순위에 대한 계산 방법 ( defualt = average) c("average", # 각 순위의 평균으로 통일 "first", # 처음 오는 순서대로 1순위 (처음으로 발견된 데이터 우선) "last", # 마지막 데이터에 1순위 (마지막에 발견된 데이터 우선) "random", # 순서 상관없이 랜덤 "max", # 동률 순위 중 가장 높은 값 출력 "min")) # 동률 순위 중 가장 낮은 값 출력(대부분의 rank 구현 방법 ) > disease library(doBy) > disease$rank orderBy(~ 콜레라, disease) 월별 콜레라 ..